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SYNOPSIS 

A recently developed strain-coupling constitutive equation for nonlinear viscoelasticity is 
used to analyze extensional flows. Comparisons are presented between the predictions of 
the theory and experiment for equibiaxial- and uniaxial-step strain-stress relaxation ex- 
periments. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

A strain-coupling constitutive equation has recently 
been proposed'-5 as a possible improvement to the 
K-BKZ constitutive equation. Furthermore, it has 
been shown that the strain-coupling constitutive 
model provides satisfactory descriptions of strain 
and time variations for double-step shear strain- 
stress relaxation experiments for both linear and 
branched7 polymers. The objective of this study is 
to extend the application of the strain-coupling 
constitutive equation to the analysis of nonlinear 
viscoelasticity in extensional flows. The generaliza- 
tion of the strain-coupling model to the analysis of 
extensional flows is described in the second section 
of this article, and predictions for uniaxial and equi- 
biaxial extensional flows are presented in the third 
section. Comparison of the predictions of the theory 
with available extensional flow data is considered 
in the fourth section of this article. 

GENERALIZATION OF STRAIN-COUPLING 
MODEL 

The strain-coupling model is described by the fol- 
lowing equation for the extra stress S :  
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where 

I = t r [ N -  I ]  ( 3 )  

I I =  f [ 1 2 - t r ( N - I ) 2 ]  

( 4 )  

( 5 )  

(6 )  

= tr[N-'  - I ]  - 2 t r [ N -  I ]  

N ( s )  = C;l(t - s )  

N - ' ( s )  = C t ( t  - s )  

In these equations, t is the present time; s ,  the back- 
ward running time; C t ( t  - s ) ,  the right Cauchy- 
Green tensor relative to time t ;  and I ,  the identity 
or unit tensor. The strain-coupling constitutive 
equation, which has three scalar-valued material 
functions, &, 62, and 63, reduces to the K-BKZ 
constitutive equation when @3 = 0. For the strain- 
coupling model, the influence of each strain incre- 
ment on the stress is dependent on other strain in- 
crements. For the K-BKZ model, such coupling of 
strains is assumed to be negligible. 
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For single-step shear strain-stress relaxation ex- 
periments, it is often possible to write the shear 
stress for viscoelastic fluids in the following factored 
form: 

Here, y1 is the instantaneous shear strain applied 
at t = 0; a(?,, t ) ,  the resulting shear stress for 
t > 0; G (  t )  , the shear stress relaxation modulus of 
linear viscoelasticity; and h ( y 5 ) , a monotonically 
decreasing function of strain with h(0) = 1. For 
many materials, time-strain factorability is valid at 
least for low values of yl, whereas for some mate- 
rials, the factored form given by eq. ( 7 )  is valid for 
a wide range of y l .  Time-strain separability will OC- 

cur for the strain-coupling model if 

ds I ,  

For simple shear deformations, II = -I. In addition, 
analysis of a single-step shear strain experiment 
leads to the result 

Also, it has been shown elsewhere7 that P( s l ,  s) and 
K (  I) can be evaluated using the following expres- 
sions: 

9k a' 9s/x; &,/Xi p(s,sl)  = -- I e -  e s > s l  (14)  
1 - k i=l  X i  

Here, k is a constant, and ai and Xi are constants in 
a commonly used expression for m ( t )  : 

The following equation can be used to evaluate 
the constant k7: 

This equation is based on the utilization of a double- 
step shear strain-stress relaxation experiment with 
an instantaneous strain y1 introduced at t = 0 and 
a second total strain y2 introduced at t = t l .  The 
quantity ACT( yl, y2, t ,  tl ) represents the difference 
between the shear stress a(yl, y2, t ,  tl) measured 
for t > tl and the prediction of the K-BKZ theory 
for the double-step experiment. From eq. ( 17) ,  it is 
clear that a single data point ( a  particular value of 
t )  from a single double-step experiment with y1 = y, 
y2 = 0, and fixed ti is needed for the evaluation of 
k .  Furthermore, it has been shown previously7 that 
k can be estimated without using double-step data. 
The following equations provide a reasonable esti- 
mate for k :  

8 ( 1  - k)  '= K ( y 2 )  
8 ( 1  - k )  

These equations appear to be valid at moderate 
strain levels. For example, it has been shown that a 
choice of y2 = f yields good estimates for k for two 
polymeric  system^.^ 

It was shown previously7 that data taken from 
an appropriate series of single-step shear strain- 
stress relaxation experiments and from, at most, a 
single double-step shear strain experiment can be 
used to evaluate G ( t ) ,  H * ( I ) ,  p(sl, s), and K ( I ) .  
Consequently, 43 and 41 - 42 (for cases for which 
11 = - I )  can be determined, and the more important 
aspects of simple shear deformations can be ana- 
lyzed. However, more experimental data and/or ad- 
ditional constitutive hypotheses are needed if more 
general deformations, like extensional flows, are to 
be analyzed. In this paper, we introduce two addi- 
tional constitutive assumptions and show that only 
one additional experimental fact is needed to achieve 
a complete description of the nonlinear viscoelastic 
behavior of the material. We introduce the following 
two constitutive hypotheses: 
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1. The functions 41(s, I ,  11) and 42(s, I ,  11) 
are related as follows: 

where 6 is a constant that can be determined 
using an appropriate experiment. 

2. The two functions 41 and 42 can be derived 
from a potential W .  

The first constitutive hypotheses is suggested by 
the relatively modest shear rate dependence of - N2/ 
N1, where Nl and N2 are the first and second nor- 
mal stress differences for steady shear flows. For 
steady shear flows with shear rate +, the deformation 
field is described by the following equations: 

y2s2 ys 0 
"(s) - I ]  = [ 0 O] (21)  

[N-'(s)  - I ]  = [ -2 y 2 2  :] (22) 

( 2 3 )  

0 0  

0 -ys 0 

I = -11 = y"2 

Consequently, for the strain-coupling model, it can 
be shown using eqs. ( 1 )  and (20) that the ratio of 
normal stress differences is given by the following 
expression: 

rco rco 

In the limit as y + 0, Q = 0, and eq. (24)  reduces 
to the following result: 

(26)  [ - = Tk 
Thus, normal stress data taken using steady shear 
flow can be used to determine the 
constant E. Furthermore, a shear rate dependence 
for - N2 ( y ) /Nl ( + ) is possible because of the pres- 
ence of Q, the strain-coupling contribution to the 
normal stress ratio. The utilization of a constant 
value for E is thus reasonable since it does not pre- 

clude the possibility of a shear rate dependence for 
the normal stress ratio. 

The second constitutive hypothesis is suggested 
by the fact that the expression containing the con- 
tribution to the stress of the uncoupled strains in a 
viscoelastic fluid can be regarded as a generalization 
of the stress expression for an incompressible elastic 
body. Indeed, Larson' has shown how the K-BKZ 
equation can be derived by generalizing the theory 
of rubber elasticity by using a history integral for 
the potential. It seems reasonable to suppose that 
only the part of the strain-coupling constitutive 
model that involves uncoupled strains should be de- 
rived from a potential W since the strains for elastic 
bodies are, of course, not coupled. Hence, if we follow 
the development of Larson, the following expres- 
sions are valid for 41 and 42 in terms of the potential 

W ( s ,  i, 8): 

aw rbl = 2 -  
d I  

aw 
4 2  = -2- 

aB 
f = t r N  

Combination of eqs. (20) , ( 2 7 ) ,  and (28)  produces 
the following first-order partial differential equation 
for W: 

aw aw 
aB 

- - - & -  
d I  

The solution to this equation takes the form 

w =  W ( I * )  (32) 

(33) 
i+ CB - 3 ( 1 +  E )  

l + &  
I* = 

Since 

i = I + 3  

fi = 2 1 +  11+ 3 (34)  

the generalized invariant I* can be written as fol- 
lows: 



736 VRENTAS AND VRENTAS 

1 ( 1  + 2&) &II +- ( 3 5 )  I* = 
l + &  l + &  

Clearly, I* = 0 when I = 11 = 0. Also, I* = I when 
11 = - I  (as in simple shear flows). Time-strain fac- 
torability will occur if the potential function W ( s ,  
i, 8) is factorable: 

W ( s ,  i, I?) = m ( s )  @( i, r?) ( 3 6 )  

It is evident, then, from eqs. ( 8 ) ,  ( 9 ) ,  ( 2 7 ) ,  and 
( 2 8 )  that 

m( s )H*(  I* ) 
l + &  4 l ( S ,  I ,  I I )  = ( 3 7 )  

The above development and previous work6s7 
suggest the following procedure for the complete de- 
termination of the material functions of the strain- 
coupling theory, $1, 4 2 ,  and &, for materials for 
which time-strain factorability is applicable: 

1. A series of single-step shear strain experi- 
ments is conducted over an appropriate range 
of yl .  These data can be used to determine 
G (  t )  and h( I )  using eq. ( 7 ) .  The parameters 
ai and X i  can be determined from standard 
procedures using the G ( t )  data and eqs. ( 1 0 )  
and ( 1 6 ) .  

2.  The function K (  I ) / (  1 - k) can be deter- 
mined over an appropriate range of I using 
h ( I )  data in eq. ( 1 5 ) .  

3. A single data point from a single double-step 
shear strain experiment with y2 = 0 and an 
appropriate value of y1 = y can be used to 
determine k from eq. ( 1 7 ) .  In the absence of 
double-step data, eq. ( 1 8 )  can be used to es- 
timate k. The function K (  I )  can then be de- 
termined over the complete range of I for 
which K (  I )  / ( 1 - k )  values are available. 

4.  It is then possible to determine ,f3( s, sl) using 
eqs. ( 13)  and ( 1 4 ) ,  and, thus, 43 can be com- 
puted using the known K (  I )  and ,B( s, s1 ) from 
eq. ( 1 1 ) .  

5 .  The quantity H*( I )  and, hence, H*( I* ) can 
be calculated using eq. ( 1 2 ) .  

6 .  Steady shear experiments over an appropri- 
ate range of + can be used to determine N2/ 
Nl  near i. = 0. This ratio can be calculated 
using data taken on cone-and-plate and par- 
allel-plate viscometers.'.' The constant c can 

be calculated from eq. ( 2 6 )  using the value 
of N 2 / N 1  at the zero shew rate limit. 

7 .  The quantities & ( s ,  I ,  11) and 42(s, I ,  11) 
can be calculated using eqs. ( 3 7 )  and ( 3 8 )  
with I* defined by eq. ( 3 5 ) .  

The above procedure requires only data taken in 
simple shear deformations, using both step strain 
and steady shear histories. Only one double-step ex- 
periment, at most, is needed, and the steady shear 
data are required only near i. = 0. 

ANALYSIS OF EXTENSIONAL FLOWS 

Extensional flows can be conveniently characterized 
using extension ratios. In a uniaxial single-step 
strain-stress relaxation experiment, the material is 
stretched in a ratio X1 in the x direction at t = 0 and 
contracts in a ratio ( in they and z directions. 
For this uniaxial-step strain experiment, the defor- 
mations tensors for t > 0, s > t are simply 

" ( s )  -I] = 0 
1 

1 _ _  
XI 

0 

o - - i J  1 L o  XI 

( 3 9 )  

l o  0 x 1 - 1  J 
with the invariants given by the following expres- 
sions: 

1 4 
XI 

( 4 2 )  + 2hl - 2x: - - + 3 

For t > 0 and s < t ,  both deformation tensors and 
both invariants are identically zero. Hence, the 
strain-coupling model [ eq. ( 1 ) ] yields the following 
expression for the normal stress difference: 
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This equation can be simplified by substituting eqns. 
( l l) ,  (37), and (38), by using the results677 

and by defining a damping function h U  for uniaxial 
extension: 

sxx - '7 = h u ( I * ) G ( t )  x; - x; 

When all these equations are used in eq. (43), the 
following expression can be derived 

h U (  I* ) = H*( I* ) 

Finally, utilization of eq. ( 12) produces the following 
result: 

hU(I*) = q , [ h ( I * )  - K ( I * ) ]  + K ( I )  (48) 

(49) 

Equation (48) provides a simple relationship be- 
tween the uniaxial damping function, h U ,  the shear 
damping function, h ,  and the strain-coupling func- 
tion K (  I ) .  Clearly, an extensional flow prediction 
can be made based on material functions derived 
using only data from simple shear flows. 

For an equibiaxial single-step strain-stress re- 
lation experiment, the material is stretched in a ratio 
hl in the x and y directions at  t = 0 and contracts 
in a ratio in the z direction. For this equibiaxial- 
step strain experiment, the deformation tensors for 
t > 0, s > t are as follows: 

x:-1 0 

0 x:-1 O 0 1 (50) 
" ( s )  - I] = 1 

0 XtlJ 1 l o  

0 x:-1J  

and the invariants can be expressed in the following 
forms: 

(53) 
I I = - -  2 4x; + A': - - +  2 3 

A: x: 

Again, for t > 0, s < t ,  both deformation tensors and 
both invariants are identically zero. The strain-cou- 
pling constitutive equation [ eq. ( 1 ) ] produces the 
following result for the normal stress difference: 

r m  r m  

If we now define a biaxial damping function using 
the equation 

and proceed in a manner similar to the procedure 
used for the derivation of the result for a uniaxial 
extension, we deduce the following expression: 

h B ( I * )  = q p [ h ( I * )  - K ( I * ) ]  + K ( I )  (56) 

1 + ex:: 
4 2  = ~ 

l + C  
(57) 

The form of eq. (56) is, of course, very similar to 
the form of eq. (48) since the equibiaxial extension 
can be regarded as a special type of uniaxial exper- 
iment with a compression in the stretching direction. 

RESULTS AND DISCUSSION 

Extensional flow predictions are presented here for 
two polymers: The IUPAC branched low-density 
polyethylene sample and a commercial low-density 
polyethylene sample similar to the IUPAC sample.'' 
Values of K (  I )  / 8  ( 1 - k )  for the IUPAC sample are 
presented in Figure l.7 The curve in this figure was 
computed using an average of the shear damping 
function, h ( I ) ,  for the IUPAC A (Ref. 11) and 
IUPAC X (Ref. 12) samples. A value of k = 1.5 was 
reported elsewhere7 for the IUPAC sample. The 
strain dependence of K(I ) /8(1  - k )  for the low- 
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Figure 1 
125-15OOC. 

Strain dependence of K ( Z) / 8  ( 1 

density polyethylene sample used by Khan and 
Tanner" is presented in Figure 2.7 Since there are 
some differences between the calculated shear 
damping function and the experimental damping 
function data, all calculations in this study were 
based on h ( I )  values between the experimental and 
calculated values. No value of k could be calculated 
for this sample using eq. (17) because double-step 
data with y2 = 0 were not available. Consequently, 
a value of k = 1.14 was estimated for this commerical 
polyethylene sample using eqs. (18) and (19) with 
y2  = $. Finally, a value of N2/N1 = -0.22 has been 
reported13 for low-density polyethylene, and this 
leads to a value of c = 0.28, which was used for both 
of the above polyethylene samples. 

A comparison of the predictions of the strain- 
coupling theory for equibiaxial step strain-stress 
relaxation experiments with data" for the low- 

i 0.06 1 / 
0.04 0.02 v 

o f  1 I I 1 
0 0.4 0.8 I .2 16 

I 
Figure 2 
commercial polyethylene sample lo at 130°C. 

Strain dependence of K ( Z ) / 8 (  1 - k )  for the 

15 20 25 30 

I 
k)  for IUPAC sample for temperature range 

density polyethylene IUPAC sample is presented in 
Figure 3. From this figure, it is evident that there is 
good agreement between the predicted and experi- 
mental values of hs, the biaxial damping function. 
In addition, a comparison of the predictions of the 
strain-coupling theory for uniaxial-step strain-stress 
relaxation experiments with data lo for the com- 
mercial low-density polyethylene sample is pre- 
sented in Figure 4. In this case, there is reasonably 
good agreement between the predicted and experi- 
mental values of hu, the uniaxial damping function, 

0- 
0 0.4 0.8 1.2 1.6 

Ln X ,  

Figure 3 Comparison of theory and experiment for 
equibiaxial-step strain-stress relaxation. The curve is the 
prediction of the strain-coupling theory for the damping 
function, and the solid circles represent experimental 
data." 
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1.0 

0.9 

h, 0.8 

0.7 

0.6 I I I I I 

0 0.2 0.4 0.6 
Ln A ,  

Figure 4 Comparison of theory and experiment for 
uniaxial-step strain-stress relaxation. The curve is the 
prediction of the strain-coupling theory for the damping 
function, and the solid circles represent experimental 
data." 

particularly when consideration is taken off the fact 
that there is some uncertainty in the shear damping 
function for this polymer melt. Finally, the predicted 
dependence of hB and hU on I for the IUPAC sample 
is presented in Figure 5 along with experimental data 
for the shear damping function h. At low values of 

I .o 

0.8 
z 
I- 

3 
LL 

(3 

z 0.4 a 
5 a 
n 

0 
0.6 

0.2 

0 

I, hB > h > hU, and this prediction appears to be in 
agreement with experimental data presented by 
Larsong for the IUPAC sample. At higher values of 
I, h > hB, and again this agrees with the data pre- 
sented by Larson. Also, a t  higher values of I, h and 
hU are very close together, whereas Larson shows 
that hU is significantly larger than h for sufficiently 
high strains. However, it must be remembered that 
the value of hU presented by Larson is calculated 
using data from a stress growth experiment, and 
there is no reason to expect that such an hU is the 
same as the true hUpredicted for an actual uniaxial- 
step strain-stress relaxation experiment. 

It appears that the strain-coupling theory is ca- 
pable of predicting extensional flow data for low- 
density polyethylene samples using only data col- 
lected in shear deformations. It is important, of 
course, to keep the apparent success of this model 
in perspective since data for only one material have 
been analyzed. However, it is fair to conclude that 
the present form of the strain-coupling model might 
well provide a reasonably good method of describing 
both shear and extensional deformations in poly- 
meric materials. 

It is important to emphasize that the comparisons 
between data and results from the strain-coupling 
theory presented here for extensional flows are based 
on predictions of the extensional flow results since 
no extensional flow data are utilized. On the other 
hand, the usual comparisons of data and results from 

0.3 I 10 I00 

I 
Figure 5 Dependence of damping functions on I. Curve A is the strain-coupling prediction 
for the biaxial damping function, hB, and the dashed curve is the strain-coupling prediction 
for the uniaxial damping function, hU. Curve B represents experimental data for the shear 
damping function, h. 
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the K-BKZ theory for extensional flows are based 
on correlations of the extensional flow results. A 
generalized invariant is usually proposed and con- 
stants in the expression for the invariant are deter- 
mined using extensional flow Such an ap- 
proach does not provide a meaningful evaluation of 
the predictive capabilities of the K-BKZ theory. 
However, planar extensional flows can be used to 
check directly the applicability of the K-BKZ theory 
to extensional flows. It has been shown that the K- 
BKZ theory provides an inadequate prediction for 
planar extension.12 Furthermore, if strain-coupling 
effects are excluded in our theory, the predictions 
for equibiaxial extension will be poor. 

This study was supported by funds provided by the Dow 
Chemical Company. 
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